
A CPSC 647 PROJECT

Feynman-Path Simulation and Visualization

Project ID: 06

Aidan Evans
Department of Computer Science

Yale University
aidan.evans@yale.edu

Zhiyao Ma
Department of Computer Science

Yale University
zhiyao.ma@yale.edu

December 10, 2021

Prof. Yongshan Ding
Project Advisor

i

Abstract
Our project runs parallel Feynman-path simulation targeting a single server or serverless

architecture and visualize the calculation path in hopes of providing researchers a tool to help
understand the precise role of interference in quantum circuits. We mathematically describe
how we turn Feynman-path simulation into a parallel algorithm. We describe our implementa-
tion in C++ targeting the two architectures. The visualization of the calculation path consists of
a graph-based diagram showing the intermediate amplitudes of each possible state throughout
the computation. Color-coded edges of various thickness will show the sign and magnitude of
each amplitude and nodes will represent each possible state. Nodes will be displayed in a lay-
ered structure with each layer containing states possible for a specific step in the computation.

1 Introduction
Our project runs a parallel version of Feynman-path simulation and visualize the computation
path. Users of our application can manipulate the quantum circuit, the input state and the output
state graphically in our frontend. The user input will be sent to the simulation back-end through
a web API, where the simulation is actually performed. After the result is returned, the frontend
will render the intermediate results and weights along the computation path. Currently, the only
tool to our knowledge which currently constructs visualizations of the Feynman-path relies on the
circuit being constructed in Python. This tool also does not display as much information as it
could; while it does change the arrow color based on the amplitude’s sign, it could provide more
information on the exact transitions between states and make reading the diagram more intuitive.
Our implementation includes these additional pieces of information that previous versions of a
Feynman-path tool do not display and make the creation of the diagram easier than having to
program it through Python.

We first give a formal mathematical algorithm description of the parallel Feynman-path sim-
ulation. We break each intermediate state into sets and view the gates as mappings operating on
sets. Each thread can then run in parallel and independently work on a set. With the algorithm for-
mulated, we describe our implementation with C++. A straightforward implementation is based
on the standard C++ asynchronous library where the compiled simulation program is running in a
single process with multiple threads.

Additionally, we choose to target serverless architecture to run the simulation because we con-
sider it to be the best way for personal user or small enterprise to perform classical simulation.
Serverless completely relieves the user from managing servers and users will only be charged at
the time their submitted computation request is running. It allows high concurrency, which easily
goes beyond thousand, so we can achieve low task completion time way below that on a personal
workstation. We make considerable engineering effort to break the algorithm into lambda handlers,
provide indirect data passing through external key-value storage, and establish control channels.

We also provide a frontend interface for the generation of Feynman-path diagrams and easy
interaction with the backend. We provide various configuration options for the diagram and the
ability to dynamically interact with the generated diagram or download it as an image. The diagram
itself clearly displays how the signs and magnitudes of both the real and imaginary parts of the
computation paths change throughout the computation. The path itself is drawn using curved edges
so that the edges between states reflects that of a natural flow. From testing, we have determined
that the frontend can easily handle computations with upwards of 2000 unique paths.

1

2 Backend Simulation
In this section we introduce the design and implementation of the backend, where the description
of gates are sent and the state of computational stage is generated.

2.1 Algorithm Design
We run Feynman path algorithm in the backend. Here we give a brief introduction of iterative
Feynman path simulation algorithm.

2.1.1 Sequential Feynman Path Algorithm

The input of the algorithm is a list of gates. Denote the length of the list as s. In our implementation
we restrict the accepted type of gates to a chosen set of single and double qubit gates. For single
qubit gates, we accept Pauli-X, Y and Z gate, S gate (rotation of π/2 along the z-axis), T gate
(rotation of π/4 along the z-axis) and Hadamard gate. For double qubit gates, we accept the
controlled version of all of the single qubit gates above. These gates are universal.

Additional inputs are the number of qubits and whether we need to calculate the associated
amplitudes of each intermediate states.

The algorithm starts from the initial state |ψ0⟩ = |0⟩⊗n. For each gate in the input list, denoting
the gate as a unitary matrix Ui, the iterative way of calculating the state after applying the i-th gate
is

|ψi⟩ = Ui |ψi−1⟩ . (1)

The algorithm output is the set of the intermediate states and the final state {|ψ1⟩ , |ψ2⟩ , · · · , |ψs⟩}.
However, calculating the states by performing matrix-vector multiplication as in Eq.(1) has

high performance overhead. The observation is that by our chosen gate set, each Ui is sparse and
has a relatively simple structure. We thus directly consider the mapping effect of each unitary
matrix.

The first step is to change the internal representation of a state from a vector to a set. Each
element in the set is the pair of a basis state and the associated amplitude.

|ψi−1⟩ := {α(0)
i−1 |0 · · · 00⟩ , α

(1)
i−1 |0 · · · 01⟩ , α

(2)
i−1 |0 · · · 10⟩ , · · · , α

(2n−1)
i−1 |1 · · · 11⟩} (2)

Given a gate, its effect when acting on a basis is to map it to another basis and to multiply a
coefficient to the amplitude. Take Pauli-Y gate acting on the 0-th qubit (Y [0]) as an example.

Y [0](α |x0⟩) = −i · α |x1⟩ (3)

Y [0](β |y1⟩) = i · β |y0⟩ (4)

Here x and y are arbitrary binary strings of length (n − 1). Applying a gate G on a state is
equivalent to applying the map to all of the elements in the set to form a new set.

|ψi⟩ = G(|ψi−1⟩) := {G(e)|e ∈ |ψi−1⟩}. (5)

For the gate set we accept, the time complexity for mapping a single element (i.e. a single basis
with its amplitude) is O(1). Thus, assuming that we run the algorithm sequentially, the total time
complexity is the sum of the cardinal number of the intermediate state sets

2

O(
s∑
1

Card(|ψi⟩)). (6)

2.1.2 Parallel Feynman Path Algorithm

Now we parallel the execution of Feynman path algorithm. Observe that the mapping procedure
of each element in a set is independent from each other, so we can split the mapping into several
concurrent running threads. Mathematically,

G(|ψi⟩) = G(|ψ1
i ⟩) ∪G(|ψ2

i ⟩) ∪ · · · ∪G(|ψt
i⟩), where |ψi⟩ = |ψ1

i ⟩ ∪ |ψ2
i ⟩ ∪ · · · ∪ |ψt

i⟩ . (7)

Each thread processes a “partial state” (e.g. |ψt
i⟩). When all of the running threads finish a

stage, we can then aggregate the partial results together to get back the intermediate state. Note
that we do not need to aggregate immediately after each stage. Threads can continue to apply the
following gate. We can even choose to aggregate back the states when we finish all of the stages.

For the sake of simplicity, above we slightly abused the mathematical notation. Not all of the
gates we accept in our algorithm is one-to-one mapping, specifically the Hadamard gate. In this
case the mapping is one-to-two.

H [0]({α |x0⟩}) =
{
α√
2
|x0⟩ , α√

2
|x1⟩

}
(8)

H [0]({α |y1⟩}) =
{
α√
2
|y0⟩ , −α√

2
|y1⟩

}
(9)

Hadamard gate leads to the growth of the set. For instance if the t-th thread is working on
|ψt

i−1⟩ and at the current stage it should apply a Hadamard gate (e.g. on qubit 0). The new set after
mapping will have double cardinal number than the previous one.

Card(|ψt
i⟩) = Card(H [0](|ψt

i−1⟩) = 2 · Card(|ψt
i−1)⟩) (10)

Thus, to keep the working set of each thread within a manageable size, when it reaches a size
threshold T , we partition it into two sets of equal size and spawn a new thread to work on the new
one.

2.2 Implementation
We implemented two versions of the backend server. They provide an identical interface facing the
frontend. The whole code base is over 2000 lines of C++ code. Most of the code is shared between
the two versions, but the control channel, intermediate state storage and asynchronous function
invocation parts are architecture specific. A compilation flag controls which architecture to target.

The backend exposes an HTTP API. Requests to the backend are sent through HTTP POST.
Each request should contain the number of qubits, a list of gates, and whether or not the amplitude
is needed in the result. Request arguments should be packed in JSON format sent through the
HTTP POST payload. The backend sends the result back through the HTTP response, containing

3

the basis and amplitudes of each intermediate state, also packed in JSON format. The backend
implements the HTTP server with uWebSockets1.

When indicated that amplitude is not required in the result, the backend responds with the basis
that has non-zero amplitudes at each stage, but does not send back the amplitude, not even calculate
them during the computation.

Note that although in section 2.1.2 we explore the possibility that iterating through subsequent
gates with partial states can happen concurrently with aggregating calculated partial states, we do
set additional synchronization barriers in the implementation. The reason is merely to limit the
number of threads running in parallel. Otherwise, for an large enough input, we may exhaust
system resource.

Below we discuss the two implemented deployment architecture.

2.2.1 Single Server Deployment

In single server deployment we ran the backend as a single process on a multi-core machine. Since
all of the working threads live in the same address space, they can pass data to each other by
exchanging pointers. The states can always be stored in memory and need not to be written out to
external storage.

Threads in single server deployment are spawned through the standard C++ asynchronous API
(i.e. std::async). The API returns a std::future object which can be used as the join
handle of the spawned thread. When all of the threads calculating for the partial states of stage i
finishes, we join back all of them. Next, a new thread is spawned to aggregate partial results

|ψi⟩ = Aggr(|ψ1
i ⟩ , |ψ2

i ⟩ , · · · , |ψt
i⟩).

At the same time, t threads are spawned to continue to process |ψr
i ⟩ , r ∈ {1, 2, · · · , t}.

A thread will output two pointers by splitting the result set if after the mapping its working set
exceeds a predefined size threshold, but normally it will output only one pointer.

The controller thread waits for all of the newly spawned threads to finish before proceeding to
the next iteration, to limit the number of concurrent threads.

2.2.2 Serverless Deployment

Function as a service (FaaS) is now a growing workload in the cloud. Service providers allow their
customer to upload programs in source files written in high level language or as compiled exe-
cutable binaries. These programs will be invoked when associated condition is met. For instance,
a trigger can be set to monitor whether a new file is uploaded to a cloud storage and invokes the
function automatically when it happens. The uploaded programs are usually named lambda han-
dlers. Additionally, programmers can invoke the uploaded program directly through the cloud
provider’s SDK. Developers are freed from maintaining the server and managing the infrastruc-
ture. They can simply get their computation task done when it needs to be done, thus the name
serverless.

From the customer side, the merit of moving to serverless is that the cloud provider can provide
a concurrency level counting in thousands. Moreover, cloud providers only bill their user based on
actual usage. That means when the program is not running, nothing is charged to the user.

1https://github.com/uNetworking/uWebSockets

4

https://github.com/uNetworking/uWebSockets

We believe that the workload of classical simulation is highly spiky. Most of the time we are
idle, but when we are performing the simulation we need extraordinary high concurrency. The
pattern matches well with what serverless provides.

We choose Amazon AWS Lambda2 as the FaaS provider, because it is publicly available and
provides free computation time. The maximum concurrency we can obtain from it is 10003. Each
running instance can receive at most 10GB memory4.

The control logic of the serverless deployment is the same as in the single server one, but the
implementation of data passing and thread spawning are different. Each thread in the single server
deployment is now a separate running lambda handler instance. They are spawned in different
containers and very often running on different machines. We establish a Redis key-value storage
server to mediate data passing. Intermediate partial states are stored in this storage server and
retrieved later.

The controlling thread in the serverless deployment is a process running inside an EC25 virtual
machine instance. We establish publisher-subscriber channels through the Redis server to allow
control information exchange between the controller and the worker lambda instances. Specifi-
cally, after a lambda instance writes its output to the Redis key-value storage, it reports back to the
controller the keys it just stored through its channel.

All lambda instances are spawned by the controller through AWS SDK6 API call. From the
perspective of the spawned lambda, it is triggered by the direct invocation event. In the event
payload sent from the controller to the spawned lambda, we embed the information it needs to
perform its task and communicate with the controller. The embedded information includes the
keys into the Redis key-value storage from which it retrieves its input partial states, the gate it
should apply and the name of the channel it should use to communicate with the controller.

2.3 Discussion and Future Work
2.3.1 Exact Performance

Though it would be very informative to see how many qubits the backend can simulate given a
realistic application, but since we are using Amazon AWS Free Tier7, our monthly lambda com-
putation time is limited. Moreover, the Redis server we deployed has very limited bandwidth
and storage quota. What we have demonstrated is the feasibility to run Feynman path simulation
workload with serverless architecture, and its potential is promising.

2.3.2 Partial State Merging

One loose end in our algorithm implementation is that partial state sets can be no longer “disjoint”
after passing through a Hadamard gate. As a minimal example, consider that two threads are

2https://aws.amazon.com/lambda/
3https://docs.aws.amazon.com/lambda/latest/dg/invocation-scaling.html
4https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.

html
5https://aws.amazon.com/pm/ec2/
6https://aws.amazon.com/sdk-for-cpp/
7https://aws.amazon.com/free/

5

https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/latest/dg/invocation-scaling.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html
https://aws.amazon.com/pm/ec2/
https://aws.amazon.com/sdk-for-cpp/
https://aws.amazon.com/free/

concurrently applying a Hadamard gate to their respective partial set |ψ1⟩ and |ψ2⟩. Suppose that

|ψ1⟩ = {α |0⟩}, (11)

|ψ2⟩ = {β |1⟩}. (12)

After applying a Hadamard gate, the new partial states |ψ′
1⟩ and |ψ′

2⟩ are not “disjoint” because
they share common basis.

|ψ′
1⟩ = H(|ψ1⟩) =

{
α√
2
|0⟩ , α√

2
|1⟩

}
(13)

|ψ′
2⟩ = H(|ψ2⟩) =

{
β√
2
|0⟩ , −β√

2
|1⟩

}
(14)

When common basis occurs between two sets, the speed up gained from multi-threading is not
linear anymore. In the worst case, all of the threads might work on exactly the same set of basis,
yielding no speed up. Thus, we should merge together two sets when they share too many common
basis. However, this is yet to be implemented and we leave it as a future work.

One challenge of implementing the merge algorithm is to decide which two sets need to be
merged. Simply counting the number of basis they share is intractable because it requires calculat-
ing the intersection between each pair of the sets. One possible approach is to sample from each set
and then observe how similar the samples are between pairs. The more the samples looks similar,
the likely that two sets share many common basis.

3 Frontend Visualization

3.1 Related Work
A previous Feynman-path diagram creation tool8 exists but this tool does not display as much
information as it could and sometimes is not the easiest to read. We used this tool as a starting
point in how the generated diagram should look; this fact can be seen in our choice of colors for
the sign of the real-valued amplitudes, discussed below: blue for positive, orange for negative.

3.2 Method
3.2.1 Input Format

We specify the input circuit by uploading a JSON file containing the circuit via a file upload button
on the frontend. The JSON is of the same format as that exported by the popular quantum circuit
simulator Quirk9. Therefore, the exported JSON from Quirk can be easily uploaded and run on the
frontend.

The specific JSON format is described as follows: The JSON contains one key/value pair where
the key has the field name “cols” and the value is an array of arrays. Each array in the main array
specifies the gates to be applied during a stage of the computation. Gates in each stage are denoted

8https://github.com/cduck/feynman_path
9https://algassert.com/quirk

6

https://github.com/cduck/feynman_path
https://algassert.com/quirk

1: {
2: “cols”: [
3: [“H”],
4: [1, “H”],
5: [“•”, “Z”],
6: [1, “X”, “•”]
7:]
8: }

Figure 1: Example JSON and corresponding circuit.

by a corresponding character at the index of the array associated with the qubit the gate is to be
applied to; for example, if an “H” is at the ith index of the array, then at this stage, a Hadamard
gate is applied to qubit qi.

Further formatting specifics are best explained with an example. Consider the JSON depicted
in figure 1. Per the above reasoning, the array on line 3, applies a Hadamard gate to qubit q0. On
lines 4 and 6, the ones represent the identity gate and essentially act as padding so that later gates
may be properly indexed by the qubit they apply to. Accordingly, on line 4, a Hadamard is applied
to qubit q1. On lines 5 and 6, “•” denote that this stage of the computation applies a controlled
gate. Thus, line 5 represents a controlled-Z gate with qubit q0 as the control and q1 as the target;
similarly, line 6 represents a controlled-X gate with qubit q2 as the control and q1 as the target.

3.2.2 Backend Communication

Before we send the circuit JSON to the backend to perform the simulation, we first preprocess the
circuit in order to standardize the types used in the array and convert complicated UTF-8 characters
into simpler ones. This surmounts to changing all integer ‘1’s to the string “I” and changing all
“•”s to “.”s.

We then add a “qubits” field to the JSON with the number of qubits used in the circuit and and
depending on what specific settings are desired for simulation, a boolean “with amp” field – the
“with amp” field is further explained in section 3.2.3.

Once the circuit JSON is fully preprocessed, it is then sent to the backed by performing an
HTTP POST request using the JavaScript Fetch API. At the moment, since we run the frontend
locally and the backend on a separate domain, in order to circumvent CORS policy, a proxy server10

is run locally for making the request to the backend.

3.2.3 Diagram Generation

After making the HTTP POST request to the backend and receiving the simulation data, we then
process this data to set up the Feynman-path diagram. We leverage the JavaScript library Konva11

to generate the diagrams because of its efficient and easy-to-use interface. figure 2 depicts the

10https://github.com/nsnave/feynman-path-diagram/blob/master/test-server/
cors.py

11https://konvajs.org/docs/index.html

7

https://github.com/nsnave/feynman-path-diagram/blob/master/test-server/cors.py
https://github.com/nsnave/feynman-path-diagram/blob/master/test-server/cors.py
https://konvajs.org/docs/index.html

Figure 2: Diagram generation logic.

Figure 3: Arrow color scheme based on ampli-
tude.

Figure 4: Example 1 Circuit

basic idea behind how the diagram is generated. Each row represents a possible state in the com-
putational basis; each column represents a stage in the computation. The arrows between columns
represent how the application of a unitary gate affects the state.

We apply this basic diagram generation process to generate diagrams that are both easy to
read and convey useful information. We generate diagrams as a layered graph with nodes in each
column corresponding to the possible state of the computation at that stage where. The radii of
these nodes depend on the amplitude of the state; α, β, α′, and β′ in figure 2. Arrows between
nodes corresponding to the specific part of the unitary – u1, u2, u3, or u4 – being applied where
the width of these lines depend both on the unitary part and the amplitude of the node the arrow is
originating from. For example, in figure 2, the width of the arrow between α |0⟩ and α′ |0⟩ would
depend on the values of u1 and α. Specifically, the width is computed for an arrow associated with
the unitary part ui and originating from a node with amplitude α as follows:

Weight(α, ui) = |(αui)(αui)∗|

The color scheme of each node and arrow depend on the sign of the real and imaginary part of
the amplitude or unitary part, respectively. Figure 3 depicts the colors associated with these signs.
One may ask at this point: “What about numbers with both a real and imaginary part, such as
1
2
+ 1

2
i?” The coloring scheme of these numbers uses both the real and imaginary colors combined

together; further explanation on colors is provided with an example in section 3.3.7.
In addition to the feynman-path diagram itself, we also provide options for listing the gates

being applied to each layer at the top of the diagram and the state associated with each row on the

8

Figure 5: Example 1 Diagram

sides of the diagram; these are present in the examples below.
To avoid cluttering the diagram, some users may wish not to display the nodes and only care

about the arrows; for this purpose, we provide an option to not display the nodes.
We also provide an option to permute the order in which the states are displayed. In the case

of two qubits, this allows one to toggle between either ”00, 10, 01, 11” or ”00, 01, 10, 11” order.
In some cases, this makes it easier to read the diagrams. We provide both the permuted and non-
permuted diagrams for the examples in sections 3.3.1 and 3.3.2.

Finally, we also provide an option to not compute the amplitudes of the computation; the
“with amp” field mentioned previously is set to “False” in this case. This allows for the backend to
compute the diagram faster; however, we lose meaningful information and, therefore, the diagram
is no longer as useful. Not calculating the amplitudes also prevents us from knowing where inter-
ference actually happens and only where it may happen. We provide an example of this option in
section 3.3.6.

3.3 Examples
We now discuss some examples to demonstrate the usefulness of our tool.

3.3.1 Example 1: Superposition

We first provide an example that demonstrates how the width of the nodes and edges changes
based on the state amplitudes. The circuit, depicted in figure 4, consists simply of a Hadamard
gate applied to each qubit. This causes the path to “split” at each stage of the computation, leading
the node and arrow widths to grow smaller as the superposition of states increases. We include
non-permuted and permuted variations of this diagram in figures 5 and 6, respectively.

9

Figure 6: Example 1 Diagram Permuted

3.3.2 Example 2: Scalability

We further extend the circuit of section 3.3.1 to include Hadamard gates applied to ten qubits.
This demonstrates that the diagram generation is scalable enough to handle tests with about ten
qubits. Because the width of the arrows shrinks greatly at the later stages, the frontend interface
allows users to zoom and move around the diagram. Because of the massive number of objects
on the canvas, however, there is some lag when moving around the canvas but it was not enough
to significantly impact use on ten and eleven qubit tests we tried. This is a case where toggling
“All Nodes” to off may be useful since not adding the nodes significantly decreases the number
of objects on the canvas. Section 5.2.1 in the Appendix contains the non-permuted and permuted
diagrams for this example.

3.3.3 Example 3: Interference 1

One of the most usefull things Feynamn-path diagrams depict is interference. Consider the circuit
in figure 7. This creates a Bell pair by taking advantage of destructive interference of the |01⟩
and |10⟩ states. Via the Feynman-path diagram we generated in figure 8, we can see this process
happen. First look at the |10⟩ row in the last layer of the computation; here we have a blue line
and orange line converge. Since the blue represents a positive real and orange a negative real, they
cancel out resulting in the amplitude of the |01⟩ node in the last layer to equal zero – and, thus,
is not displayed. Similarly, for the |10⟩ row, we have two blue lines converge but one of the blue
lines originates from an orange node and, therefore, the two lines which converge on |01⟩ will still
cancel out during the computation. We are then left with just the |00⟩ and |11⟩ nodes in the final
layer.

10

Figure 7: Example 3
Circuit

Figure 8: Example 3 Diagram

3.3.4 Example 4: Interference 2

Consider the circuit in figure 10 and its corresponding diagram in figure 9. With this circuit, we
wish to point out the constructive interference which happens when the first Hadamard is applied
to qubit q1; i.e., the first “H1” in the diagram. Here we see that the radius of the |01⟩ and |10⟩
nodes increase after H1 due to constructive interference and the |00⟩ and |11⟩ nodes disappear due
to destructive interference.

3.3.5 Example 5: Ancilla Introduction

As depicted in figure 11, we add a CNOT gate to copy the intermediate result of the Example
4 circuit onto an ancilla. This causes the interference which occurred in the previous example
not to happen, showing why ancillae may affect the output of a computation. Notice that the
corresponding diagram, figure 12, does not contain any interference during the first H1 stage, as it
did before adding the ancilla.

3.3.6 Example 6: Unchecking the “Get Amplitudes” Option

We now show two diagrams for the circuit in figure 15. Figure 13 depicts the circuit’s diagram
with amplitude calculation and figure 14 shows it without. Notice that because when constructive
or destructive interference happens depends not only on the unitary but also the amplitudes, we
cannot rule out the computation paths which destructively interfere with each other. Therefore,
this explains why the computation path computed without the amplitudes includes more edges
between nodes in the last layer than it did with amplitude calculation – we couldn’t know whether
destructive interference happened.

11

Figure 9: Example 4 Diagram

Figure 10: Example 4 Circuit
Figure 11: Example 5 Circuit

12

Figure 12: Example 5 Diagram

Figure 13: Example 6 Diagram With Ampli-
tude Calculation

Figure 14: Example 6 Diagram Without Am-
plitude Calculation

Figure 15: Example 6 Circuit
Figure 16: Example 7 Circuit

13

Figure 17: Example 7 Diagram

3.3.7 Example 7: Complex Amplitudes

Up to this point, we have dealt with circuits which only had real-valued amplitudes and unitaries.
We now introduce a circuit with complex values. Consider the circuit in figure 16; this applies a
Hadamard gate followed by four T gates. The corresponding diagram is depicted in figure 17. In
the |1⟩ row, each edge associated with a T gate is a mix of blue and green – the colors corresponding
to positive real and positive imaginary values. This makes sense because a T gate is defined as

T =

[
1 0
0 eiπ/4

]
=

[
1 0
0 1

2
+ 1

2
i

]
=

[
u1 u2
u3 u4

]
Since we are looking at the edge from |1⟩ to |1⟩, the color-scheme of this edge will be based on
u4 =

1
2
+ 1

2
i. For a complex number a+ bi, the color ratio is determined as follows:

Re =
|a|

|a|+ |b|

Im =
|b|

|a|+ |b|

where Re is the percentage of the line which colored for the real part and Im for the imaginary
part.

If the sign of a is positive the color of the real part is blue, else orange. If the sign of b is positive
the color of the imaginary part is green, else pink. This is summarized in figure 3. Moreover, this
choice of colors leads to positive values being associated with cooler colors and negative values
being associated with warmer colors. The specific color hues were also chosen to achieve optimal
contrast between any two adjacent colors.

Returning to the example, we can see how the amplitude changes after each T gate; the node
color scheme is determined similarly to the lines’. As the T gates are applied, we see the real to

14

imaginary ratio of |1⟩ amplitudes changes as follows:

(+100) : 0 ⇒ (+50) : (+50) ⇒ 0 : (+100) ⇒ (−50) : (−50) ⇒ (−100) : 0

This is in line with the actual amplitude changes of the |1⟩ during the computation:

1√
2
⇒ 1

2
+

1

2
i⇒ 1√

2
i⇒ −1

2
− 1

2
i⇒ − 1√

2

Moreover, we can also determine from this example that the output state is |−⟩ because from just
looking at the final nodes, we see that both have equal radii and the |1⟩ amplitude is negative.
Therefore, the final state will be

|0⟩ − |1⟩√
(⟨0| − ⟨1|)(|0⟩ − |1⟩)

=
|0⟩ − |1⟩√

2
= |−⟩

which is what it should be since applying an H gate changes |0⟩ to |+⟩ and applying four T gates
in a row is equivalent to applying a Z gate.

3.4 Future Work
The diagram could be made more interactive by having the exact numerical amplitude displayed
when hovering over a node. We could also provide additional diagram options for the display
of the specific amplitude values in the diagram itself. The circuit input method could also be
improved by providing a text box for a circuit JSON to be pasted into, instead of uploading a file,
or for a circuit creation tool to be embedded into the frontend so that both circuit creation and
feynman-path simulation could exist in the interface.

4 Conclusion
In this project we implement a parallel version of Feynman-path simulation algorithm and deploy
it on both a single server and serverless architecture. We provide an HTTP API interface allowing
simulation requests to be sent to the backend with ease. We show that it is promising to run
classical simulation in the cloud. We provide a frontend for easy communication with the backend
and the generation of dynamic, intuitive diagrams displaying meaningful information about the
computation. The frontend interface is available as a GitHub repository.12.

12https://github.com/nsnave/feynman-path-diagram

15

https://github.com/nsnave/feynman-path-diagram

5 Appendix

5.1 Backend Example
5.1.1 Backend API Example

import json
import requests

url = ’http://44.195.46.250:23333’

payload = {
’qubits’: 3,
’with_amp’: True,
’cols’: [

[’H’],
[’I’, ’H’],
[’I’, ’I’, ’S’],
[’.’, ’X’],
[’Z’, ’.’],
[’I’, ’.’, ’Y’],
[’I’, ’T’, ’.’],
[’.’, ’I’, ’H’],

]
}

malformatted_payload = {
’qubits’: 3,
’with_amp’: True,
’cols’: [

[’R’]
]

}

Send HTTP post request and get the response.
mal_response = requests.post(url, json=malformatted_payload)

Check the "success field".
mal_response_dict = json.loads(mal_response.text)
print(’With malformatted input, "success" =’, mal_response_dict[’success’])

Send HTTP post request and get the response.
response = requests.post(url, json=payload)

Parse the response to a Python dict.
response_dict = json.loads(response.text)

Make sure the invocation is successful.
assert response_dict[’success’]

print(’Number of qubits:’, response_dict[’qubits’])
cnt = 0
for amplitude in response_dict[’amplitudes’]:

16

Print the amplitudes after each stage.
print(’Stage’, cnt)
for key, val in amplitude.items():

Print base and amplitude in the format "base [real, imaginary]".
print(’%s\t [%.4f, %.4f]’ % (key, val[0], val[1]))

print()
cnt += 1

5.1.2 Output Example

’’’
With malformatted input, "success" = False

Number of qubits: 3
Stage 0
000 [0.7071, 0.0000]
001 [0.7071, 0.0000]

Stage 1
000 [0.5000, 0.0000]
010 [0.5000, 0.0000]
001 [0.5000, 0.0000]
011 [0.5000, 0.0000]

Stage 2
000 [0.5000, 0.0000]
010 [0.5000, 0.0000]
001 [0.5000, 0.0000]
011 [0.5000, 0.0000]

Stage 3
000 [0.5000, 0.0000]
010 [0.5000, 0.0000]
011 [0.5000, 0.0000]
001 [0.5000, 0.0000]

Stage 4
000 [0.5000, 0.0000]
010 [-0.5000, 0.0000]
011 [-0.5000, 0.0000]
001 [-0.5000, 0.0000]

Stage 5
000 [0.5000, 0.0000]
110 [0.0000, 0.5000]
111 [0.0000, 0.5000]
001 [-0.5000, 0.0000]

Stage 6
000 [0.5000, 0.0000]

17

110 [-0.3536, 0.3536]
111 [-0.3536, 0.3536]
001 [-0.5000, 0.0000]

Stage 7
000 [0.5000, 0.0000]
110 [-0.3536, 0.3536]
111 [0.2500, -0.2500]
011 [-0.2500, 0.2500]
001 [-0.3536, 0.0000]
101 [-0.3536, 0.0000]
’’’

18

5.2 Frontend Diagrams
5.2.1 Example 2 Diagrams

19

	Introduction
	Backend Simulation
	Algorithm Design
	Sequential Feynman Path Algorithm
	Parallel Feynman Path Algorithm

	Implementation
	Single Server Deployment
	Serverless Deployment

	Discussion and Future Work
	Exact Performance
	Partial State Merging

	Frontend Visualization
	Related Work
	Method
	Input Format
	Backend Communication
	Diagram Generation

	Examples
	Example 1: Superposition
	Example 2: Scalability
	Example 3: Interference 1
	Example 4: Interference 2
	Example 5: Ancilla Introduction
	Example 6: Unchecking the ``Get Amplitudes'' Option
	Example 7: Complex Amplitudes

	Future Work

	Conclusion
	Appendix
	Backend Example
	Backend API Example
	Output Example

	Frontend Diagrams
	Example 2 Diagrams

