
Complexity Fest Student Lecture, CPSC 568, Fall 2022

A Quick and Unorthodox Introduction to Descriptive Complexity
December 13, 2022

Lecturers: Aidan Evans and Jessie Chen

Normally in the study of complexity theory, we ask, for example, "How hard is it decide
whether a number is even?"; in descriptive complexity, on the other hand, we ask, "How hard is it
to describe what an even number is?". Descriptive complexity is a subfield of computational com-
plexity which aims to study complexity classes by representing languages/problems as sentences
in formal systems of logic, e.g., first-order logic. In descriptive complexity, or more broadly, the
field of finite model theory, we discuss the expressive power of logics — for example, what can we
express, i.e., describe, in first-order logic? Profound connections have been proved between the
expressive power of certain logics and complexity classes. For example, as we’ll discuss below, a
logic known as existential second-order logic (ESO) describes exactly those problems contained
in NP; thus, we say that ESO captures NP. This is known as Fagin’s theorem.

In what follows, we first provide a brief introduction to the study of logic using model the-
ory in Section 1 — a subfield of mathematics and one of the two preliminaries to understanding
descriptive complexity, the other preliminary being computational complexity theory itself. We
then introduce Fagin’s theorem formally in Section 2 and give a brief overview of the proof. In 3,
we then turn to discussing logics which capture some other common complexity classes in and in
Section 4, we introduce the important but often inadequately explained concepts of what it means
for a logic to be order- and arithmetic-invariant. We include several exercises throughout this doc-
ument; Section 5 contains a challenge exercise and Section 6 contains solutions for the exercises.
Finally, Section 7 lists some additional material for those whom wish to learn more.

1 Crash Course in Model Theory

1.1 Structures
We’re all familiar, at least informally, with first-order logic (FO): statements where we use the
universal (∀) and existential (∃) quantifiers and logical connectives (∧, ∨, ¬, etc.), i.e., quantified
boolean formulas, to formalize statements. The formulas are over fixed predicates/relations, like
the edge relation E we use when discussing graphs. Here are some examples stating properties of
graphs:

Example 1.1. Say we wish to formalize the sentence:

“G = (V,E) is fully connected.”

Then, we would write:
∀x∀yExy

1

Figure 1: Graphs for Example 1.3

Example 1.2. “G = (V,E) has a diameter of at most two.” may be expressed as:

∀x∀y(x = y ∨ Exy ∨ ∃z(Exz ∧ Ezy))

Most of the time when we informally use first-order logic, we implicitly know by the context
of our discussion what the domain of the quantifiers are, i.e., what the quantifiers “range over”.
This may be, for example, the natural number, the integers, or in the examples above the vertices
of our graph. Model theory formalizes this using structures:

Definition 1.1 (Structures). A structure A = (A,R1, R2, . . .) is a tuple where A is a set and
R1, R2, . . . are relations/predicates on the set A. The set A is called the domain of A and is
typically denoted as either |A| or dom(A). There may be no relations or infinitely many. Structures
are also often referred to as models.

Remark 1.1. Observe that whenever we discuss graphs and write G = (V,E), we are actually
treating G as a structure. V is our domain and E is a relation specifying which two vertices have
an edge between them.

Our structures provide an interpretation of our sentences. They help us take some arbitrary
sentence and evaluate whether the sentence is actually “true”. Truth here, however, is relative to
our structure and, therefore, when we say a sentence is “true”, we must always have a structure
that the truth is with respect to.1 Whenever we consider a sentence true with respect to a structure
we say that the structure satisfies our sentence.

Definition 1.2. We say that a structure A satisfies a sentence φ if and only if we evaluate φ to be
true with respect to A.2 We denote this as A |= φ.

Example 1.3. The FO sentence in Example 1.2 is satisfied by Graph B in Figure 1 but not Graph
A.

1Note that the definition of what makes a sentence true outright, regardless of structure, is a bit more complicated.
For our purposes right now, we don’t need to know this, however. For more details, see [10].

2Again, like truth, the actual definition is a bit more complicated and involves recursively interpreting each symbol
of the sentence. Think, how we use truth tables to evaluate whether a propositional sentence is true. For more details,
see [10].

2

Definition 1.3 (Finite Structure). In the general study of model theory, we do not have restrictions
on the domain of our structures. In finite model theory, however, we require that the domains
of our structures must finite sets. We refer to structures of this type as finite structures. From a
complexity perspective, we pretty much only care about finite structures.

1.2 Second-Order Logic
Second-order logic (SO) is an extension of first-order logic where we add the ability to quantify
relations. Thus, we may now use our quantifiers to act over relation symbols, like how we’re used
to using them to quantify variables. For the purpose of this lecture, we will first define formally an
important fragment of SO known as existential second-order logic (ESO):3

Definition 1.4. ESO is an extension of first-order logic where sentences are of the form

∃R1 . . . ∃Rk(φ)

where φ is a first-order formula and each Ri is a relation not yet bounded in the formula φ.
We then say that A |= ∃R1 . . . ∃Rk(φ) if there exists relations R1, . . . , Rk defined on the

domain of A such that (A, R1, . . . , Rk) |= φ.

In Section 2, we prove that the properties that ESO describes are exactly those in NP but, first,
we need to formalize what we mean for a sentence to describe/express properties. We do this in
the following subsection.

Exercises

Exercise 1.1. In this warm-up exercise, we consider how to write first-order logic and existential
second-order logic expressions with some familiar examples.
Show how to express the following properties of a graph in first-order logic:

1. A graph G = (V,E) has at least one vertex of degree 0.

2. Every vertex in the graph G = (V,E) is connected by a path of length 3.

Show how to express the following examples in existential second-order logic:

3. A CNF formula φ is in SAT. Hint: a natural way to encode φ is to use the structure A =
(A,P,N), each a ∈ A represents both a clause and a variable, P and N are relations s.t.
P (c, x) means variable x occurs positively in clause c and N(c, x) means that variable x
occurs negatively (i.e., ¬x) in clause c.

4. A graph G = (V,E) is 3-colorable.

5. There exists a size k clique in the graph G = (V,E).
3The literature also abbreviates ESO as ∃SO and SO∃.

3

1.3 Connecting Logic to Complexity
When we say that a property is described or expressed by some sentence, what we are really
talking about are properties of our structures. For example, a structure’s domain could be either
odd or even; thus, "having a domain with even cardinality" is a property. (We will locate which
class this property falls within in Exercise 4.2.) Ultimately, whenever we prove that a logic and
complexity class have the same computational power, we draw a correspondence between the
structures which satisfy sentences of our logic and the inputs which an appropriate Turing machine
for our complexity class accepts.

Definition 1.5 (Model Class). We call the model class of a sentence φ inside a set of structures D
to be the set of structures ModD(φ) ⊆ D which satisfy φ:

ModD(φ) = {A ∈ D | A |= φ}

Definition 1.6. For a fixed sentence φ in a logic L, the complexity of deciding membership to the
set ModD(φ) is known as the data complexity or structure complexity.

Remark 1.2. The terminology data complexity comes from the relationship of finite model theory
to the study of relational databases: researchers are often interested in studying the expressive
power of query languages, i.e., the languages used to query databases. Hence, sentences and
formulae in logics are often also referred to as queries. For example, imagine a database has a
bunch of graphs as its entries; then, we can have the database return all fully connected graphs
with the query ∀x∀yExy.

Definition 1.7. We say that a logic L captures a complexity class C over structures D if

(1) The data complexity of L on D is C. In other words, if φ is an L-sentence, the problem of
deciding for any A ∈ D, whether A |= φ is in C.

(2) For every property P of structures in D which is decidable in complexity C, there exists an
L-sentence φ such that for every A ∈ D, A |= φ iff A has property P .

Remark 1.3. Observe that in the above definition, Condition (1) proves that any property express-
ible in logic L is a property decidable in complexity class C. Therefore, L ⊆ C. Similarly,
condition (2) proves that C ⊆ L.

Condition (1) tends to be the “easier” direction to prove because Condition (2) typically re-
quires us to encode a Turing machine’s behavior in terms of our logic — a somewhat complicated
and pedantic task, as we’ve seen with the Cook-Levin theorem.

Remark 1.4. Ideally, we would like a logic to capture classes over all finite structures but, sadly,
we often can only find logics which capture classes over a subset of finite structures. This is the
reason why we include in Definition 1.7 a specification of what structures D we care about. If a
logic L does capture a class C over all finite structures, then we simply say that L captures C.

As we’ll see in Section 2, ESO captures NP over all finite structures. We’ll take a look at logics
which captures classes only over a subset of the finite structures in Sections 3 and 4.

4

Remark 1.5. Technically, in order to pass a structure A into a Turing machine, we need to encode A
as a string. The details are beyond the scope of this document but you can imagine something akin
to the following just to get a concrete idea. To encode A = (V,E) = ({a, b, c}, {〈a, b〉, 〈b, c〉}) and
assuming our Turing machine uses the alphabet {0, 1, #}, we could write:

111###00#01##01#10

The “111” informs us that we have three elements in our domain V . The “00#01##01#10” then
encodes our relation E where each x ∈ V is encoded with dlog |V |e bits; thus, a 7→ 00, b 7→ 01,
and c 7→ 10.

By being a bit more clever, we can remove the need to encode each x ∈ |A| in binary — and,
thus, avoid introducing the extra log |V | factor required to write each element. If n = |V | = ||A||,
we will show in Exercise 2.1 that we can encode any k-ary relation in O(nk) bits. Therefore, we
can encode A in O(poly(n)) bits.

2 Fagin’s Theorem: Capturing NP with ESO
Now that we know what it means for a logic to capture a complexity class, we may finally discuss
specific cases of this. We start with the most infamous: Fagin’s theorem [11]. In 1974, for his
doctoral dissertation, Ronald Fagin proved that ESO captures NP over all finite structures. At
the time, this was the first result which drew a relationship between complexity classes and the
expressive power of logics and kickstarted what would turn into the field of descriptive complexity.

It’s worth noting, however, that this was not the first capturing result in the study of computer
science and finite model theory; in what is considered the “pre-history” of descriptive complexity
theory, there also exists capturing results connecting types of formal languages to the expres-
sive power of logic. The first such result occurred circa 1960 when Büchi [4], Elgot [9], and
Trakhtenbrot [32, 33] all independently proved that the regular languages are captured by monadic
second-order logic — second-order logic where we are only allowed to have unary relations.4

Returning to Fagin’s theorem, since proving Condition (1) of Definition 1.7, i.e., ESO ⊆ NP,
is relatively easy, we will provide a detailed proof of this fact. For Condition (2), i.e., NP ⊆ ESO,
however, we only give a proof sketch because to give a proof which goes into all the nitty-gritty
details would contradict this being a “quick” introduction and some of the details are quite similar
to the Cook-Levin theorem.

Theorem 2.1 (Fagin). ESO captures NP (over all finite structures).

Proof. We first prove Condition (1) of Definition 1.7; namely, that the data complexity of ESO is
NP.

Let Φ be an ESO sentence. Without loss of generality, let Φ be of the form ∃R(φ) where R
is a relation of arity k unbounded in the first-order formula φ. We want to show that there exists

4If you are interested in learning more about this result, we suggest to not look at the original papers because they
contain outdated terminology and are, well, tough to read in general. Instead, take a look at Chapter 7 of [23].

5

a non-deterministic Turing machine M such that given an aribtrary finite structure A as input, M
can decide whether A |= ∃R(φ) in O(poly(||A||) time.

The basic idea is that we will have M non-deterministically guess each possible k-ary relation
R and then along each possible computation path, check whether (A, R) |= φ. To do so, we need
to prove:

(a) We can write down our k-ary relation R, in O(nk) space, where n = ||A||.

(b) We can check whether (A, R) |= φ within deterministic polynomial time.

We leave (a) as an exercise; see Exercise 2.1.
For (b), first observe that because the first-order quantifiers in φ range over the set |A|which has

cardinality n, we only have a linear number of possibilities to check per quantifier. For example, if
we have the first order sentence ∀xRx, then we could check whether this was true by iterating over
each x ∈ |A| and checking whether Rx is true; if checking whether Rx takes T (n) time, then this
whole operation takes O(nT (n)) time. If we have two quantifiers, such as ∀x∃y(Rx ∨ Ry), then
we’d iterate over |A| twice, taking O(n2T (n)) time. Because there will only be a finite number
of quantifiers in φ, checking whether (A, R) |= φ will always take O(ncT (n)) time for some
constant c. Finally, because it takes O(poly(n)) bits to write down R, it will take us at most
O(poly(n)) time to have our tape head move through R to check if x is there; thus, checking Rx
will take T (n) = O(poly(n)) time. Thus, we can deterministically check whether (A, R) |= φ in
O(ncpoly(n)) = O(poly(n)) time.

All together, to check A |= ∃R(φ), we non-deterministically write down R. By (a), this takes
polynomial space and, thus, may be done in polynomial time. After, we will have one computation
path for every possible R. Then, have each path accept iff (A, R) |= φ. By (b), we can have each
path check whether (A, R) |= φ in polynomial time. Therefore, if A |= ∃R(φ), then there exists
an R such that (A, R) |= φ so one of the computation paths of M will accept and, hence, M itself
will accept; if A 6|= ∃R(φ), then there does not exist an R such that (A, R) |= φ so all paths will
reject and, thus, M will reject.

We have, therefore, proven that M accepts A iff A |= Φ. Thus, ESO ⊆ NP.

For the direction NP ⊆ ESO, we give only a proof sketch. Let P be a property of finite
structures for which there exists a polynomial-time non-deterministic Turing machine M which
decides whether a structure A has property P . In order to show that NP ⊆ ESO, we need to
construct an ESO sentence ΦP such that A |= ΦP iff A has property P .

Let A be an arbitrary finite structure. All we know is that M is a non-deterministic Turing
machine which can decide whether A has property P in polynomial time. In order to construct
ΦP , we encode the behavior of our Turing machine as a logical sentence.

Specifically, we will have several relations defined over |A|, which we denote by the tuple R,
such that these relations will represent a computation of M on input A. We will then construct a
first-order sentence φP such that (A, R) |= φP iff the relations R represent an accepting computa-
tion of M on A.

Note that we are essentially having our sentence search over all possible paths our machine M
could take on input A by encoding each path in R and checking it’s correctness with φP .

6

Most of the relations in R help us determine the configuration of M at different steps of the
computation on A. For example, for each state q that M could be in (a finite number), we’ll have
the predicate:

Xq = {t | at time t, M is in state q}

Thus, Xq is passed in a timestamp t and if M is in state q, then Xqt will evaluate to true. Likewise,
we also have predicates to tell us the tape contents and head position.

There’s a small nuance we left out of the above definition: namely, if our computation takes
a polynomial number of steps, it’s not at first glance clear how we ensure that all timestamps can
be passed in to our relation because our relation can only have a finite arity — even though the
number of timestamps we need to handle is unbounded. We leave this for Exercise 2.2.

Our first-order sentence φP will then be of the form

START ∧ COMPUTATION ∧ END

where

• START ensures that our relations correctly represent the starting configuration a Turing ma-
chine should be in; i.e., we’re in our initial state, etc.

• COMPUTATION ensures that at each timestamp, only those cells which should have been
changed were and that we made a valid transition from one state to the next. (This is the
most detailed of the three clauses.)

• END finally ensures that we eventually end up in an accepting state.

After a “little” more work, we eventually get that M accepts A, i.e., A has property P , iff
A |= ΦP . Thus, NP ⊆ ESO.

Therefore, we have proven that ESO captures NP so we finally have that NP = ESO. Thus, we
conclude our “brief” explanation of Fagin’s theorem.

Remark 2.1. For all the details of Fagin’s theorem, several sources are available containing a proof
of it. Notably, the original source [11] is worth checking out for all the details. Textbooks [13,
23, 22, 27] also all contain proofs using slightly different methods — and of various degrees of
difficulty to understand.

Remark 2.2. From [14], if instead of Turing machines, we consider a model of computation known
as non-deterministic RAM machines, then we actually know of a precise relationship between ESO
and O(nk) computation. Namely, for each k ≥ 1, NRAM-TIME(O(nk)) = ESO(k-arity, k∀, fun);
that is, ESO with functions, only at most k first-order universal quantifiers, and each relation and
function has arity at most k. We don’t know of such tight bounds for Turing machines. (Also, note
that this model of computation differs from “TMs with random-access”, defined in Section 4.2.2.)

7

Exercises

Exercise 2.1. Show that we can write down our k-ary relation R in O(nk) space, where n =
||A||. Note that arity is the number of arguments or operands taken by the relation. Hint: First
try to encode the familiar edge relation E using n2 bits by thinking about the adjacency matrix
representation.

Exercise 2.2. Our quantified relations, Xq for each state q, need to have a fixed finite arity. They
take a tuple of variables as input; this tuple represents an encoding of what step of the computa-
tion we are at, i.e., the timestamp. Our computation takes O(nk) time and, therefore, has O(nk)
timestamps. Prove that we can encode all O(nk) timestamps as a constant length tuple which we
can then pass into Xq, thus, proving that Xq has a fixed finite arity.

Exercise 2.3. Construct the END part of our first-order sentence φP .

3 Capturing Other Classes

3.1 coNP and PH
As a corrolary to Fagin’s theorem, we get:

Corollary 3.1. Universal second-order logic (USO), SO with only universal second-order quanti-
fiers, captures coNP over all finite structures.

Say that a problem P in NP is captured by ESO sentence Φ. Complementing P surmounts to
simply negating Φ; thus, P = ¬Φ. Since ¬∃ ≡ ∀¬, we now have a USO sentence capturing P .

Theorem 3.2. SO captures PH over all finite structures.

Proof. This proof is similar to Fagin’s theorem and, therefore, we omit the proof here.

3.2 Fragments of SO
We now turn to discussing some of the complexity classes within NP. In this subsection, we focus
our attention on P followed by a brief discussion of L and NL. In 1982, Immerman [19, 21], Vardi
[34], and Libchak [24] all independently proved that FO extended with a special least-fixed point
operator captures P over all ordered finite structures; this has become known as the Immerman-
Vardi theorem. Other extensions of FO were later shown to capture L and NL. Instead of ap-
proaching the task of capturing L, NL, and P by constructing logics which extend FO as most
introductory texts do, we instead follow the work of Grädel [12] and look at logics which restrict
SO, i.e., fragments of SO.

Remark 3.1. In this section, all of the capturing results only hold over all ordered finite structures.
We postpone discussion of what this means until Section 4 but we note that if a logic L captures
a class C over all ordered finite structures, then we write that C = L(<) or that L(<) captures C.
We also note that L ⊆ L(<).

8

3.2.1 Capturing P

Definition 3.1 (Propositional Horn Formula). A propositional formula is in Horn form if it is of
the form

∧i
i=1Ci where each clause Ci is a disjunction of literals containing at most one positive

literal, i.e., each clause has at most one variable without a negation. Thus, each Ci is either of the
form x1 ∨ ¬x2 ∨ · · · ∨ ¬xj or ¬x1 ∨ ¬x2 ∨ · · · ∨ ¬xj .

Remark 3.2. Horn formulae are named after logician Alfred Horn whose work on studying formu-
lae of this type in 1951 [18] led to Horn formulae’s significant role in the fields of computational
logic, automated theorem proving, and logic programming languages, such as Prolog.

Definition 3.2 (ESO-Horn). ESO-Horn is a fragment of ESO. An ESO-Horn sentence is of the
form:

∃R1 . . . ∃Ri

(
∀x

(∧
j

Cj

))
such that each Cj is either of the form α∨β1∨· · ·∨βm or β1∨· · ·∨βm where α is a positive literal
using one of the existentially quantified relations (R1, . . . , Ri) and each βk is either a negative
literal using one of R1, . . . , Ri or is a first-order formula not containing any R1, . . . , Ri. In other
words, the first-order part is in Horn form with respect to the quantified relations.

Definition 3.3 (SO-Horn). Like ESO-Horn but now we can use any second-order quantifiers, not
just existential ones.

We now aim to prove that SO-Horn captures P over all ordered finite structures. First, we
discuss two lemmas:

Lemma 3.3. ESO-Horn ⊆ P.

Proof. To show that ESO-Horn⊆ P, we show that for any sentence ψ ∈ ESO-Horn, we can decide
whether a finite model satisfies ψ in P.

W.l.o.g., let ψ = ∃R1 . . . ∃Ri(∀x(∧jCj)), and A be the domain of the structure A. First, notice
that we can expand the first-order part of the sentence to remove the universal quantifiers ∀xj .
More specifically, we can replace each universal quantifier ∀xk with conjunctions plugging in each
x ∈ A for xk. For example, ∀x(Rx) with the domain A = {a, b, c} would become Ra ∧ Rb ∧ Rc.
Since the conjunctions are taken over elements in A, the replacement leaves us with a polynomial-
sized formula in |A|.

Then, for each clause in the first-order formula that does not contain any relation Rm (1 ≤
m ≤ i), we can evaluate the clause by interpreting it using A. By a similar argument in Theorem
2.1 (b), this evaluation can be completed in polynomial time. Then one can simplify the first-order
formula by removing clauses evaluated to be true and any repeated clauses. Or if there is a clause
evaluated to be false, we can reject ψ directly — since the whole sentence will evaluate to false.

After the simplification, the rest of the first-order part is quantifier-free and polynomially
bounded in size of |A|. And each atom Ric can be bijectively mapped to a propositional variable;

9

thus, the sentence takes the form of a propositional Horn formula. For example, let A = {a, b, c};
the remaining expression

∃R1∃R2((R1a ∨ ¬R1b) ∧ (¬R2c ∨ ¬R1b))

could be mapped to the propositional formula

(w1 ∨ ¬w2) ∧ (¬w3 ∨ ¬w2)

This propositional formula will be satisfiable iff we can actually construct Rs which satisfy the
first-order part of ψ.

Because the propositional formula is in Horn form, we can determine satisfiability in polyno-
mial time (see Exercise 3.1). Our propositional formula has length O(poly(|A|)) so our computa-
tion wil take O(poly(poly(|A|))) = O(poly(|A|)).

Thus, we can decide the set of finite models of ψ in polynomial time so ESO-Horn ⊆ P.

Lemma 3.4. SO-Horn collapses to ESO-Horn. In other words, any SO-Horn sentence may be
rewritten as an equivalent ESO-Horn sentence.

Proof. This proof is beyond the scope of this lecture; see [12] and Chapter 3 of [13] for details. At
the end of the day, we can do this because P is closed under complementation.

Theorem 3.5 (Grädel). SO-Horn captures P over all ordered finite structures; i.e., P = SO-
Horn(<).

Proof. First, by Lemmas 3.3 and 3.4, we know that SO-Horn⊆ P. While we still haven’t discussed
“order” yet, know that this result also holds over all ordered finite structures; thus, we may write
that SO-Horn(<) ⊆ P. This satisfies Condition (1) of Definition 1.7.

For the other direction, we prove that P ⊆ ESO-Horn(<) and, thus, P ⊆ SO-Horn(<). We
sadly must omit the nitty-gritty details of this direction but here’s the idea: by taking a careful
look at Fagin’s theorem when we don’t need to worry about non-determinism, we see that the ESO
sentence constructed is actually an ESO-Horn(<) sentence. Again, this is only because we are now
dealing with deterministic TMs as opposed to non-deterministic TMs. Thus, given a problem in
P , we can express it as an ESO-Horn(<) sentence. This satisfies Condition (2) of Definition 1.7.

Therefore, ESO-Horn captures P over ordered finite structures.

3.2.2 Capturing NL and L

We may similarly construct fragments of SO which capture NL and L over all ordered finite struc-
tures. In the case of NL, we restrict the FO part to be of Krom form, i.e., 2CNF, with respect
to the quantified relations; essentially, the relationship between SO-Krom and propsitional 2CNF
formulae is analagous to the relationship between SO-Horn and propositional Horn formulae. We
formalize the logic of ESO-Krom in the exercises below.

10

For L, things get a bit more complicated. Namely, Grädel’s original work in 1992 ([12]) con-
structed a logic which captures coSL, the complement of symmetric logspace,5 over all ordered
finite structures. The first-order part of this logic was of a form where we knew satisfiability
could be tested in coSL. Because we now know from Reingold’s result in 2004 ([28]) that L = SL
= coSL, the fragment of SO constructed by Grädel, therefore, captures L over all ordered finite
structures.

Exercises

Exercise 3.1. Prove that the satisfiability problem for propositional Horn formula (HORN-SAT)
is P-complete. This provides a motivation for considering why seconder-order Horn logic (SO-
HORN) captures P. In fact, it has been well-established that HORN-SAT can be solved in linear
time [6].

Definition 3.4 (ESO-Krom). ESO-Krom is a fragment of ESO. An ESO-Krom sentence is of the
form:

∃R1 . . . ∃Ri

(
∀x

(∧
j

Cj

))
such that each Cj is a disjunction of at most two literals using the R1, . . . , Ri relations and of
a first-order formula that does not contain R1, . . . , Ri. In other words, the first-order part is in
Krom/2CNF form with respect to the quantified relations.

Exercise 3.2. Prove that ESO-Krom ⊆ NL. Hint: Note that 2SAT is NL-complete.

4 Invariance and Small Complexity Classes
We finally turn our attention to complexity classes which are captured by logics only over subsets
of all finite structures, e.g., over all ordered finite structures. We focus our attention here on logics
which captures extremely small complexity classes; specifically, we discuss classes which are
known to be proper subsets of L. For the most part, we omit proofs in this section due to a desire
to keep this a “quick” introduction; where applicable, we provide basic ideas or point to sources
providing proofs — this has turned Section 4.2.2 into something of a reference page.

4.1 Defining Invariance
We carve out subsets of the finite structures by making our logics invariant with respect to certain
relations. For example, let L be a logic; we denote order-invariant L by L(<).6 L(<) extends L by

5We suggest taking a look at https://complexityzoo.net/Complexity_Zoo:S#sl for a concise def-
inition of SL.

6Sadly, there isn’t a consistent notation for invariance in the literature. Most texts use L(<), others <-inv-L. Some
texts don’t even specify; e.g., [22] just uses FO to denote arithmetic-invariant FO even though “vanilla” first-order
logic and arithmetic-invariant first-order logic are two different things. We use L(<) because it is the most concise for
our purposes.

11

giving L access to an arbitrary total/linear ordering relation<. Informally, imagine that we were to
take the domain of our structure and put the elements in some arbitrary line; the ordering relation
takes two elements as input a, b and returns true iff a comes before b in this line. Importantly, we
don’t actually know what the specific ordering is; hence, why we call the logic order invariant: all
we know is that there is an ordering and that < allows us to query this order. We can’t actually
assume that < is some specific ordering. The relation < is what we call a numerical predicate; we
now formalize this concept so that we may discuss numerical predicates more generally:

Definition 4.1 (Embedding). Let A be a finite structure such that ||A|| = n and let [n] = {x ∈
N | 1 ≤ x ≤ n} = {1, 2, . . . , n}. An embedding g is a bijection g : |A| → [n]. In other words,
g is a function which uniquely maps the elements of our structure’s domain to the first n non-zero
natural numbers.7

Remark 4.1. In what follows, we need to distinguish the numerical symbols we use in our logical
sentences from the same symbols we typically use to make claims about the natural numbers. For
example, we will need to specify whether the symbol “<” is being used as a predicate in our logic
or whether it’s the “less than” symbol over the natural numbers. Unless the context is obvious, we
will use “<g” to denote the predicate symbol in our logic and we will use “<N” to denote the “less
than” symbol over the natural numbers. We will likewise use the same notation for other numerical
predicates we come across, e.g., + and ×.

Definition 4.2 (Order-Invariant). A logic L is order-invariant, denoted L(<) if in addition to the
predicates and symbols normally available, we may also use an additional binary predicate <g in
our sentences.

Let A be a finite structure. For a, b ∈ |A|, we say that a <g b iff g(a) <N g(b) where g is an
arbitrary embedding. We call <g a total/linear order.8

Remark 4.2. Observe that when we work with database queries, we automatically have an arbitrary
ordering present: the memory address of our pieces of data. This is why researchers tend to be
interested in order-invariant queries. We know we’ll have an ordering but we have no specifics
about that ordering because the operating system manages the memory for us.

Example 4.1. Consider the FO(<) sentence φ:

∃x∃y(x < y)

For a finite structure A, we say that (A, <) |= φ iff there exists a, b ∈ |A| such that a <g b for an
arbitrary embedding g. (Note that we need to specify “<” on the lefthand-side of “|=” because if
we didn’t, we technically would not have the ability to interpret the < symbol in our sentence.)

Observe that φ is satisfied for ||A|| ≥ 2 because irrelevant of which embedding is chosen, one
element of A will be mapped to 1 and the other to 2; thus, we have two elements a, b such that

7Note that convention for [n] also is not standard. Some texts, such as [23], use [n] = {1, 2, . . . , n} while others,
such as [29], use [n] = {0, 1, . . . , n − 1}. While this doesn’t necessarily change the expressive power of our logic, it
may lead to describing properties with slightly different sentences.

8Technically, < is a strict total order; cf. https://en.wikipedia.org/wiki/Total_order.

12

a <g b. If ||A|| = 1, then the only element in |A| would map to 1 and, therefore, we’d only have
that 1 <N 1, which is false.

Definition 4.3 (Arithmetic-Invariant). A logic L is arithmetic-invariant, denoted L(+,×) if in
addition to the predicates and symbols normally available, we may also use two additional ternary
(3-ary) predicates +g and ×g.

Let A be a finite structure. For a, b, c ∈ |A|, we say that

• +gabc if and only if g(a) +N g(b) = g(c)

• ×gabc if and only if g(a)×N g(b) = g(c)

for an arbitrary embedding g. For shorthand and to ease readability, we write a +g b = c to
represent +gabc, and likewise for ×g.

Definition 4.4 (Arb-Invariant). A logic L is arb-invariant, denoted L(Arb) if in addition to the
predicates and symbols normally available, we may use any arbitrary numerical predicate definable
over the natural numbers. For example, we could have a unary predicate Oddg which tells us for
some a ∈ |A| whether g(a) is an odd number.

Exercises

Exercise 4.1. Prove that ESO = ESO(<).

Exercise 4.2. In this exercise, we will prove that whether our input structure has an even cardinal-
ity, i.e. EVEN(A), is in FO(+,×). To do that, show that

1. EVEN ∈ FO(<,+).

2. FO(<,+) ⊆ FO(+,×).

This will show that describing what it means for something to be even may be expressed in
FO(+,×) and may also be decided by a really small circuit class defined in Section 4.2.2 below.

4.2 Capturing Results
We now discuss some interesting results and observations about the relationship among first-order
logic extended with various numerical predicates and the classes of languages they capture.

4.2.1 A Hierarchy of Predicates

Theorem 4.1. FO ⊊ FO(<) ⊊ FO(+, ×) ⊊ FO(Arb)

Proof. That all of the above are subsets follows from the fact that we can, for example, express the
relation < in FO(+, ×), see Exercise 4.2.

The fact that they are all proper subsets is beyond the scope of this lecture. The common
method for proving such results is to use what are known as Ehrenfeucht-Fraïssé games; see Chap-
ters 3 and 5 of [23] for details.

13

Remark 4.3. This may seem counter-intuitive but by restricting our structures to only those where
we have, for example, a total ordering, we are actually extending the expressive power of our logic.
In other words, by only caring about a subset of all finite structures, we are able to take advantage
of this subset’s properties in order to express more about it. Because the set of all ordered finite
structures is still countably infinite like the set of all inputs to a Turing machine, we can still draw
a bijection between our the set of inputs a Turing machine accepts and each ordered finite structure
which satisfies a corresponding logical sentence.

Remark 4.4. A wealth of research has also been conducted on extending FO with other numeral
predicates, including algebraic characterizations of these classes using what are known as syntactic
monoids and semigroup theory. For an introduction to the subject, see Straubing’s textbook [31].

4.2.2 Capturing with FO(+, ×) and FO(Arb)

Definition 4.5 (TM with random-access). A Turing machine with random-access is a Turing ma-
chine with a special query tape which allows us to “index into” the input tape. Specifically, we
may write a number x in binary on the query tape and then upon entering a special query state, the
head of our TM jumps to the xth cell of our input tape.

Observe that if our input is of length n, on a TM with random-access, we can jump to the last
bit of our input (the (n − 1)th cell) in only O(log n) time because it only takes O(log(n)) space,
and thus O(log(n)) time, to write n− 1 in binary on our query tape.

Definition 4.6 (DLOGTIME). DLOGTIME is the class of problems decidable by a deterministic
Turing machine with random-access in O(log n) time.

Definition 4.7 (The Logarithmic-time Hierarchy (LH)). LH is to DLOGTIME what PH is to P.

Definition 4.8 (Uniform Circuit Class). A circuit class is C-uniform if for each family of circuits
{C0, C1, ...} deciding a problem, there must exist a Turing machine with complexity C such that
on input of length k outputs an encoding of circuit Ck. Thus, we are no longer be able to just
choose each circuit Ci with no restrictions; observe that this prevents uniform circuit classes from
containing undecidable problems, like the non-uniform circuit classes we are familiar with.

Definition 4.9 (Unbounded Fan-in Gates). A logic gate has is an unbounded fan-in gate if it can
handle any number of inputs. This is in contrast to bounded fan-in gates which only accept a
constant number of inputs — like how the circuits we’ve discussed in class only use gates which
have at most two inputs arguments.

Definition 4.10 (Non-Uniform AC0). Let P be some property. If P can be decided by a circuit
family such that for each input x of length k, there exists a polynomial-sized bounded-depth circuit
with unbounded fan-in AND and OR gates which decides whether x has property P , then we say
that P is in the complexity class non-uniform AC0.

Definition 4.11 (DLOGTIME-uniform AC0). The DLOGTIME-uniform version of non-uniform
AC0, i.e., the same type of circuits as non-uniform AC0 but the circuit families for each problem
must be generated by a DLOGTIME Turing machine.

14

Theorem 4.2 (What FO(+, ×) Captures). FO(+, ×) = LH = DLOGTIME-uniform AC0.

Proof. See [3] and [22].

Theorem 4.3 (What FO(Arb) Captures). FO(Arb) = non-uniform AC0.

Proof. See [20, 16, 2, 26].

Theorem 4.4 (LH Does Not Collapse). The log-time hierarchy (LH) is proper; i.e., it does not
collapse.

Proof. See [17, 35]. This corresponds to proving lower-bounds for DLOGTIME-uniform AC0

circuits; for the analogous lower bounds on non-uniform AC0 circuits, see [30].

Theorem 4.5. FO(+,×) ⊊ ALOGTIME.

Proof. See [5] (uses Theorem 4.4).

Remark 4.5. ALOGTIME is the class of problems solvable in alternating logarithmic time by TMs
with random-access. Note that ALOGTIME ⊆ L; therefore, FO(+,×) is really small.

We actually don’t know whether ALOGTIME is a proper subset of NP or PH. Also, if a class
C ⊊ ALOGTIME, then C ⊆ FO(+, ×). Therefore, this is the smallest class for which we don’t
know of a separation from NP or PH.

4.2.3 Capturing with FO(<)

Definition 4.12 (Star-Free Regular Languages). The star-free regular languages (SF) are a subset
of the regular languages. Namely, a regular languages is star-free (and hence in SF) if it can
be described by a regular expression constructed using the letters of the alphabet, the empty set
symbol, union, intersection, complementation, and concatenation but with no use of the Kleene
star.

Theorem 4.6. FO(<) = SF

Proof. See Straubing’s textbook [31]; originally, [25].

4.3 The Undecidability of Invariance
Often, when discuss connections between a logic L and complexity class C, it is desirable that (1)
L captures C over all finite structures and (2) L is an effective logic:

Definition 4.13 (Effective Logic). Let L be a logic. Let σ be the set of symbols used to construct
L-sentences; let σ∗ be the set of strings using symbols from σ. We say that L is effective if
membership to the set {x ∈ σ∗ | x is a L-sentence} is decidable — i.e., we have a TM which can
tell us whether a string x ∈ σ∗ is a sentence of L. Otherwise, we say that L is non-effective.9

9cf. [15] and Lindström’s Second Theorem in Chapter 13 of [8].

15

Remark 4.6. Observe that FO and ESO are both effective logics because given a string of symbols
φ — where φ uses the symbols: ∀, ∃, R1, x, y, ∧, etc. — we can decide whether φ is an FO-
sentence by making sure that each quantfier has a variable after it, that each left parenthesis has a
matching right parenthesis, etc. For example, we can obviously construct an algorithm to tell us
that “∀x∃y(R1x ∧ ¬R2y)” is a sentence in FO but that “∀(x¬ ∧ R1))” is not.

Theorem 4.7. FO(<) is non-effective.

Remark 4.7. To prove Theorem 4.7, we would prove that given a string φ which uses the symbols
of FO plus the “<” symbol, we cannot decide whether φ is a FO(<) sentence. Note that we can
clearly decide if a string is an FO sentence which simply uses the “<” symbol. The undecidability,
however, comes from the fact that our sentence must be <-invariant (order-invariant); i.e., we
can’t just use “<” however we want. This is typically proved by using a many-one reduction to
Trakhtenbrot’s Theorem:

Theorem 4.8 (Trakhtenbrot). Membership to the set of FO-sentences satisfiable by some finite
structure is undecidable. Formally, the problem of determining whether an FO-sentence is in the
set

{φ | φ is an FO-sentence and there exists a finite structure A s.t. A |= φ}

is undecidable.

Proof. See Chapter 9 of [23] for details.

Remark 4.8. Almost all invariant logics are non-effective. (All of the ones we have seen so far
are.) There are a few known exceptions: for example, order-invariant FO with only unary relations
is decidable. This follows from its relationship to the regular languages and some algebraic details
— both of which are beyond the scope of this lecture.

Remark 4.9. When a logic is effective, it is sometimes referred to as syntactic because we can
decide sentence membership based solely on the syntax of the string. When a logic is non-effective,
it is referred to as semantic; we need to actually know the meaning assigned to the the symbols of
a string in order to decide membership.

Conjecture 4.1 (Gurevich). There do not exist effective logics which capture P and NP ∩ coNP
over all finite structures.

Corollary 4.9. If P does not have an effective logic which captures it over all finite structure, then
P 6= NP.

Remark 4.10. In 1985, Gurevich conjectured that P and NP ∩ coNP do not have effective logics
[15]. This has been an open question ever since and arguably the main question in the field of
descriptive complexity. The only logics known to capture P are non-effective logics which capture
over ordered finite structures, e.g., ESO-Horn(<). (ESO-Horn(<) is non-effective for the same
reason FO(<) is.)

16

4.4 Non-Probabilistic Weak Verifiers for NP
On a past pset, we proved that NP may also be characterized as the class of problems for which
there exists a polynomial-size certificate which we can be verified by a deterministic log-space TM.
In this subsection, we prove an even stronger claim: we prove as a corollary of Fagin’s theorem
that we can in fact use DLOGTIME-uniform AC0 circuits to verify a polynomial-sized certificate
for NP.10

Theorem 4.10. NP is the class of problems for which on there exists a polynomial-size certificate
c which can be verified using DLOGTIME-uniform AC0 circuits.

Proof. Let P be a problem in NP. By Fagin’s theorem, we know that there exists an ESO-sentence
Φ such that A ∈ P iff A |= Φ. W.l.o.g., let Φ = ∃R(φ) where φ is an FO formula and R has arity
k.

Let A be arbitrary; let n = ||A||. If A ∈ P , then A |= ∃R(φ). Therefore, there exists a
relation R such that (A, R) |= φ. By Exercise 2.1, we know that R may be written down using
O(nk) = O(poly(n)) bits. This will be our polynomial-sized certificate.

In the original proof of Fagin’s theorem in Section 2, we proved that (A, R) |= φ could be
checked with complexity P. In that case, we essentially proved that our certificate R could be
verified in poly-time. We now know that FO ⊆ FO(+,×) = DLOGTIME-uniform AC0 by The-
orems 4.1 and 4.2. Thus, because φ is an FO-sentence, we can check whether (A, R) |= φ with a
complexity of DLOGTIME-uniform AC0.

The other case, when A 6∈ P is similar. Therefore, our input A is in P iff there exists a
certificate R which may be verified using DLOGTIME-uniform AC0 circuits.

Remark 4.11. Observe that this is quite surprising when one remembers that DLOGTIME-uniform
AC0 ⊊ P. Therefore, despite DLOGTIME-uniform AC0 being a proper subset of P, both classes in
some sense have the same power when it comes to verifying polynomial-sized certificates.

In fact, by being a little more careful in our analysis, we can even prove that problems in NP
have polynomial-sized certified which can be verified in coNLOGTIME. (coNLOGTIME is to
DLOGTIME what coNP is to P.) This is really small!

Remark 4.12. By following the same procedure as done in the above theorem on the SO fragments
in Section 3.2, we can also represent L, NL, and P in terms of polynomial-sized certificate verifi-
cation. Each class’s certificate may be verified by the corresponding fragment of first-order logic
being existentially quantified over in its SO fragment. Thus, for example, certificates for P may be
verified by the first-order Horn sentences in ESO-Horn(<).

10Check out the PCP theorems for a probabilistic analog to weak verifiers.

17

5 Challenge Exercise
This following exercise relies upon intuition from all of the previous sections.

Definition 5.1 (ESO-Horn’). ESO-Horn’ is a fragment of ESO. An ESO-Horn’ sentence is of the
form:

∃R1 . . . ∃Ri

(
∀x

(∧
j

Cj

))
such that each Cj is either of the form α ∨ β1 ∨ · · · ∨ βm or β1 ∨ · · · ∨ βm where α is a positive
literal and each βk is a negative literal. In other words, the first-order part is in Horn form with
respect to the relations.

Exercise 5.1. Prove that if P = ESO-Horn’(<), then P = NP.

Hint 5.1. How does ESO-Horn’ differ from ESO-Horn?

Hint 5.2. Thinking about the standard verifier-based definition for NP may help.

18

6 Solutions to Exercises

6.1 Section 1 Solutions
Exercise 1.1. Warm-up exercise for first-order logic and existential second-order logic expres-
sions.
1. ∃x∀y(¬Exy).
2. ∀x∀y∃z1∃z2(Exz ∧ Ez1z2 ∧ Ez2y).
3. If a CNF formula φ ∈ SAT, then there exists some satisfying assignment of variables for φ.
Using the structure mentioned in the hint, the following sentence asserts that φ ∈ SAT.

∃S{∀x∃y[P (x, y) ∧ S(y)) ∨ (N(x, y) ∧ ¬S(y)]} (1)

Here, S is the set of variables assigned true in the satisfying assignment.
4. If a graph G = (V,E) is 3-colorable, then there exists three disjoint sets R, Y,B s.t. V =
R ∪ Y ∪ B and for every edge (x, y) ∈ E, x and y belong to different disjoint sets. Thus, we can
define R, Y,B as unary relation variables and write the following two-part sentence that describes
3-colorability.

∃R∃Y ∃B

∀x

 (R(x) ∧ ¬Y (x) ∧ ¬B(x))
∨(¬R(x) ∧ Y (x) ∧ ¬B(x))
∨(¬R(x) ∧ ¬Y (x) ∧ B(x))

∧

∀x∀y, Exy → ¬

 (R(x) ∧R(y))
∨(Y (x) ∧ Y (y))
∨(B(x) ∧ B(y))

(2)

One can check for themselves that the first bracket tests the constraint that V = R ∪ Y ∪ B while
R, Y,B are disjoint. And the second bracket tests that for every edge (x, y) ∈ E, x and y belong
to different disjoint sets.
5. Let U ⊆ V s.t. |U | = k. We want to test whether there exists a set C that gives the nodes of a
clique and a binary relation M that is a one-to-one mapping between C and U . This motivates us
to write the following sentence:

∃C∃M

∀x∀y[M(x, y)→ (C(x) ∧ U(y))]
∧ ∀x[C(x)→ ∃!y(M(x, y) ∧ U(y))]
∧ ∀y[U(y)→ ∃!x(M(x, y) ∧ C(y))]
∧ ∀x∀y[C(x) ∧ C(y)→ E(x, y)]

 (3)

Here, ∃!y(M(x, y)∧U(y)) is an abbreviation for there is exactly one y s.t. M(x, y)∧U(y) is true.
Thus, the first three parts of the sentence tests the existence of a one-to-one mapping between C
and U . And the last part tests whether C represents a clique.

19

6.2 Section 2 Solutions
Exercise 2.1. Show that we can write down our k-ary relation R in O(nk) space, where n =
||A||. Note that arity is the number of arguments or operands taken by the relation. Hint: First
try to encode the familiar edge relation E using n2 bits by thinking about the adjacency matrix
representation.

Proof. First we address the hint, in an a graph with n vertices, we could have n2 possible edges.
An adjacency matrix M has n2 entries where entry Mij = 1 if there’s an edge between vertex vi
and vertex vj and Mij if there’s no edge. M will have n rows an n columns where each entry only
contains a 0 or 1; thus, we can write down M by writing the first row using n bits, followed by the
second row using n bits, and so on until we’ve written down all n rows. This will leave us with a
n2 length bit string where each consecutive string of n bits encodes a row.

Given a k-ary relation R, for each argument in R, we have n choices, since n = ||A||. Thus,
for k arguments, we have nk possible inputs — all of which either evaluate to true or false on R.
Like we did for our binary edge relation E, we can then write down an nk length bit string which
encodes whether Ra for some a ∈ |A|k. Furthermore, because we’ll need to specify the arity in
our encoding, we first write k in unary, followed by a separator symbol such as #, and then our nk

bits encoding R. Thus, we can encode any k-ary relation in O(nk) space.

Exercise 2.2. Our quantified relations, Xq, need to have a fixed finite arity. They take a tuple of
variables as input; this tuple represents an encoding of what step of the computation we are at, i.e.,
the timestamp. Our computation takes O(nk) time and, therefore, has O(nk) timestamps. Prove
that we can encode all O(nk) timestamps as a constant length tuple which we can then pass into
Xq, thus, proving that Xq has a fixed finite arity.

Proof. We know that our computation take time O(nk) where k is constant. Thus, we have
O(nk) < nk+1 timestamps. For each timestamp, each individual argument to a predicate has n
possibilities since ||A|| = n. The idea is we’ll have each argument to Xq be a digit of our times-
tamp encoded in base n. When we encode our nk+1 timestamps in the base n, each timestamp will
always have a finite length of logn(nk+1) = k + 1. Therefore, we can encode each timestamp as a
tuple of length k + 1 and, thus, pass each timestamp into a relation with arity k + 1.

Exercise 2.3. Construct the END part of our first-order sentence φP .

Proof. As defined in Theorem 2.1, END ensures that we end up in an accepting state at the end
of the computation. One way to achieve this is by forbidding the Turing machine M to end up in
a rejecting state. Then since M is defined to be a non-deterministic Turing machine that decides
whether A has property P , when it does not end up in a rejecting state, we know that it will end up
in an accepting state.

Let Fr be the set of rejecting states for M , where Fr is a finite set since the set of states in M
is finite for a standard Turing machine. Since M only rejects if it transitions to some state q ∈ Fr,

20

Algorithm 1 HORN-SAT Search (V, C)
S ← ∅
if ∀c ∈ C, ∃(¬x) ∈ c for some x ∈ V then

for x ∈ V do
assign x = 0, append the assignment to S

end for
output S

else
for c ∈ C do

if c is an empty clause then
output FALSE

else if c’s only literal is a positive literal p then
assign p = 1, append the assignemnt to S
while ∃c ∈ C that contains ¬p do

remove ¬p from c
end while

end if
end for
assign every unassigned variable 0
output S

end if

we may write the sentence for END as

∀ t

(∧
q∈Fr

¬Xrt

)
(4)

where t is a tuple of variables used as an abbreviation for the k + 1 variables which we use to
represent the timestamps (see Exercise 2.2). Observe that A |= END iff M never enters a rejecting
state, as desired.

6.3 Section 3 Solutions
Exercise 3.1. Prove that HORN-SAT is P-complete.

Proof. First, we show that HORN-SAT is in P. We show this by constructing a polynomial time
algorithm that searches for a satisfying assignment for a given Horn formula. The algorithm out-
puts the assignment if a satisfying assignment exists and returns false otherwise. The algorithm is
given in Algorithm 1. V is the set of all variables in the given Horn formula, and C is the set of all
clauses in the formula.

To understand the algorithm, consider the following. If every clause in C contains at least
one negative literal, then assigning all variables False gives an obvious satisfying assignment for

21

the formula. Else, by the definition of the Horn formula, if a clause contains no negative literal,
it must contains exactly one positive literal p. To satisfy the clause, we assign it to be True, and
subsequently can remove any ¬p literal from all clauses without changing the satisfiability of the
formula. Any empty clauses from the simplified formula results from having all negative literals
being assigned False values and thus cannot be satisfied. The rest of the non-empty clauses can
have at least one negative literal being assigned True and thus can be satisfied.

The algorithm at most needs to iterate through all clauses on each literal in each clause, and
thus runs in polynomial time.

Next, we show that HORN-SAT is P-hard by reducing a P-complete problem the Circuit Value
Problem (CVP) to it. Let G = {g1, g2, . . . , gn} be the set of gates in some Boolean circuit C. In
particular, let gn be the output gate. Denote the value of the gates by their output, then each gi has
value either 0 or 1.

For each gate gi, we introduce two variables pi, ni to construct a Horn formula. We set pi = gi
and ni = ¬gi. We construct a Horn formula as the conjunction of the following clauses. For each
gate gi:

• If gi = 1, include the following clauses: (pi) ∧ (¬ni)

• If gi = 0, include the following clauses: (¬pi) ∧ (ni)

• If gi is the ∧-gate with inputs from gj, gk, include the following clauses: (¬pi ∨ pj)∧ (¬pi ∨
pk) ∧ (¬pj ∨ ¬pk ∨ pi)

• If gi is the ∨-gate with inputs from gj, gk, include the following clauses: (¬pi∨¬nj∨¬qk)∧
(¬pj ∨ pi) ∧ (¬pk ∨ pi)

• If gi is the ¬-gate with input from gj , include the following clauses: (¬pi∨¬pj)∧ (¬nj ∨pi)

• If i = n, include the clause (pn)

First, observe that the clauses described above all have at most one positive literal. So the con-
junction of them forms a Horn formula. By induction on i, one can show that for any satisfying
assignment S of the Horn formula, pi ∈ S has the value of gi and ni = ¬gi, and since the clause
pn is satisfied, gn = 1, the output of the circuit is 1. On the other hand, also by induction on i,
one can show that when C outputs 1, for each i, defining pi = gi and ni = ¬gi gives a satisfying
assignment. Thus, the Horn formula is satisfiable iff the output of C is 1.

And translating each gate into some constant number of clauses can be done by some polyno-
mial time reduction. Thus, HORN-SAT is P-hard.

Given that HORN-SAT is in P and P-hard, it is also P-complete.

Exercise 3.2. Prove that ESO-Krom ⊆ NL. Hint: Note that 2SAT is NL-complete.

Proof. This is similar to Lemma 3.3 and, therefore, we do not go into the details. The only differ-
ence is that we end up with a propsitional formula in 2CNF form (a.k.a. Krom form) and then use
2SAT to solve for satisfiability in NL.

22

6.4 Section 4 Solutions
Exercise 4.1. Prove that ESO = ESO(<).

Proof. To prove that ESO = ESO(<), we show that the linear ordering relation < can be defined
as some existentially quantified predicate. By definition, a (strict) linear ordering < on a set A
must satisfy the following constraints:

(1) Not a < a (irreflexivity)

(2) If a < b then not b < a (asymmetry)

(3) If a < b and b < c then a < c (transitivity)

(4) If a 6= b then a < b or b < a (connectivity)

where a, b, c ∈ A. Moreover, it is obvious that the asymmetry property follows naturally from
transitivity and irreflexivity. Suppose for contradiction that a < b and b < a holds, then by
transitivity, a < b < a ⇒ a < a, which contradicts irreflexivity. Thus, to define a linear ordering
relation, we only need to test the three properties irreflexivity, transitivity, and connectivity. Let L
be some relation, consider the following sentence:

(∀x¬L(x, x)) ∧ (∀x∀y∀z(L(x, y) ∧ L(y, z)→ L(x, z))

∧ (∀x∀y((x 6= y)→ (L(x, y) ∨ L(y, x)))) (5)

One can check for themselves that the three parts of the sentence tests the three properties respec-
tively.

Then, for any ESO sentence ψ, we can define an existentially quantified predicate ∃L as above
and restrict the first-order part of the sentence to only care when L is a linear order. For example,
let ψ = ∃R(φ) is an ESO(<) sentence with first-order part φ; the following holds:

(A, <) |= ∃R(φ) iff A |= ∃<∃R((5) ∧ φ)

where “(5)” is replaced by equation (5) above in order to specify what “<” is. This preserves
invariance because we have no idea exactly what ordering “<” will take on; (5) simply makes sure
that “<” is some linear order.

Thus, ESO(<) ⊆ ESO. The other direction is obvious because adding a relation symbol does
not reduce the expressivity of ESO. Thus, ESO = ESO(<).

Exercise 4.2. Prove that EVEN(A) can be decided by AC0 circuits. More specifically, show that

1. EVEN ∈ FO(<,+).

2. FO(<,+) ⊆ FO(+,×).

23

Proof. 1. Let A be some structure with domain A. In FO(<,+), we have two additional relation
symbols<,+, where< acts as a linear ordering and + defines the additive relation among elements
in A. Thus, the following expression tests EVEN(A) for A:

[¬∃x(x = x)] ∨ ∃x∃y[(x+ x = y) ∧ ¬∃z(y < z)] (6)

The first part of the expression ¬∃x(x = x) tests whether A is empty. And the second part of the
expression tests whether the largest element y inA can be expressed as y = x+x for some element
x. Note that by linear ordering, we implicitly introduce a bijection betweenA and the set of positive
integers [|A|] = {1, . . . , |A|}, e.g. if A = {a, b, c}, we can introduce a → 2, b → 1, c → 3 s.t.
b < a < c. So the last element in the ordering will be mapped to |A|, the cardinality of A. Then,
y = x+ x requires the cardinality to be even.

Thus, the expression tests whether |A| = 0 (mod 2), i.e. EVEN(A).

2. To show that FO(<,+) ⊆ FO(+,×), we show that FO(<) ⊆ FO(+), then subsequently,
FO(<,+) ⊆ FO(+,×). From the explanation in part (1) of this question, we see that when
introducing the relation symbols <,+, we also implicitly introduce a bijective mapping between a
set of integers and the domain A. Intuitively, we can define < via + because we know that 1 < 3
can also be seen from 1+2 = 3 where 2 > 0. Thus, we can define linear order with + as following:

x < y ⇐⇒ ∃z(x+ z = y) (7)

Then FO(<) ⊆ FO(+), and subsequently, FO(<,+) ⊆ FO(+,×). Since EVEN ∈ FO(<,+), it
follows that EVEN ∈ FO(+,×).

6.5 Challenge Exercise Solution
Exercise 5.1. Prove that if P = ESO-Horn’(<), then P = NP.

Proof.
Remark 6.1. Recall that an ESO-Horn’ sentence is of the form:

∃R1 . . . ∃Ri

(
∀x

(∧
j

Cj

))

such that each Cj is either of the form α ∨ β1 ∨ · · · ∨ βm or β1 ∨ · · · ∨ βm where α is a positive
literal and each βk is a negative literal. In other words, the first-order part is in Horn form with
respect to the relations.

ESO-Horn’ differs from ESO-Horn because each α and β have slightly different constraints. In
ESO-Horn, α can only contain quantified relations, our Rs, and β only has to be a negative literal
if one of the quantified relations is used in it.

Assume that P = ESO-Horn’(<). Let P ∈ NP be arbitrary. We will show that P ∈ P.

24

Because P is in NP, by Fagin’s theorem and the fact that ESO = ESO(<) (see Exercise 4.1), we
know that there exists an ESO(<) sentence ΦP such that

input A has property P if and only if (A, <) |= ΦP (1)

for an arbitrary ordering relation <. Without loss of generality, let ΦP be of the form

∃R(φP)

where φP is an FO(<) formula. Therefore, there exists an R such that (A, <,R) |= φP .

Remark 6.2. From our discussion in Section 4.4, we know that the FO-part of an ESO sentence
essentially represents an encoding of a verifier for NP certificates while the existentially quantified
predicates represent the certificate existing. We can then deduce as a corollary to Fagin’s theorem
that NP may be characterized as having poly-sized certificates verifiable by DLOGTIME-uniform
AC0 circuits. Our standard definition of NP as having poly-sized certificates verifiable in poly-time
demonstrates, however, that we can “loosen” the first-order part — we don’t need it to be so small.

Therefore, because

• φP is an FO(<) sentence

• FO(<) ⊆ DLOGTIME-uniform AC0 ⊆ P,

• and P = ESO-Horn’(<) by assumption,

it follows that there exists an ESO-Horn’(<) formula φ′
P such that

(A, <,R) |= φP iff (A, <,R) |= φ′
P

∴ (A, <) |= ∃RφP iff (A, <) |= ∃Rφ′
P by definition

∴ A has property P iff (A, <) |= ∃Rφ′
P by (1)

We will now prove that ∃Rφ′
P is an ESO-Horn’(<) sentence. Without loss of generality, say φ′

P is
of the form

∃R′(φ′′
P)

where φ′′
P is an FO sentence of the appropriate form specified in our definition of ESO-Horn’.

Observe that φ′
P = ∃R′(φ′′

P) is an ESO-Horn’(<) sentence which uses R so φ′′
P will also use R.

By definition, ∃R∃R′(φ′′
P) will still be an ESO-Horn’(<) sentence because the constraints on φ′′

P

do not differentiate between our the quantified relations (R′) and the non-quantified ones (R) so we
can “requantify” R while preserving that the sentence is an ESO-Horn’(<) sentence. Therefore,
∃Rφ′

P is an ESO-Horn’(<) sentence.

25

Remark 6.3. In the original definition of ESO-Horn(<), “requantifying” R does not preserve that
the sentence is an ESO-Horn(<) sentence — which is why the proof of this exercise doesn’t un-
conditionally prove that P = NP.

Because ∃Rφ′
P is an ESO-Horn’(<) sentence and that P = ESO-Horn’(<) by assumption, it fol-

lows that we can check whether (A, <) |= ∃Rφ′
P in deterministic polynomial-time. Because

A has property P iff (A, <) |= ∃Rφ′
P

it follows that we can check if an input A has property P in deterministic polynomial-time. There-
fore, P ∈ P, allowing us to conclude that NP ⊆ P so P = NP.

26

7 Additional Material
For a very comprehensive introduction to finite model theory for computer scientists, we highly
suggest taking a look at Libkin’s textbook Elements of Finite Model Theory [23]. Also, check
out the textbook Finite Model Theory and Its Applications by Grädel et al. [13] — most notably
Chapter 3 by Grädel. We also suggest taking a look at Immerman’s textbook Descriptive Com-
plexity [22] for a more detailed look on descriptive complexity theory, as opposed to finite model
theory as a whole; although, we highly suggest taking a look at Libkin first because it is easier to
comprehend and then referencing Immerman for more details. We also found [29] to be a very
helpful survey paper when it came to understanding order invariance. For more information on
connections to formal language theory and algebra, specifically semigroup theory, see Straubing’s
textbook Finite Automata, Formal Logic, and Circuit Complexity [31]. Papadimitriou’s textbook
on computational complexity [27] also contains a nice introduction to first- and second-order logic
written for computer scientists as well as a proof of Fagin’s theorem, which the readers may find
to be another helpful explanation. For connections to database theory, see [1] — notably, Part E.

For a formal introduction to first-order logic and (non-finite) model theory see Enderton’s text-
book A Mathematical Introduction to Logic [10]. For a more advanced treatment of model theory
and finite model theory aimed towards mathematicians, see [8] and [7] respectively.

References
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases, volume 8. Addison-Wesley

Reading, 1995.

[2] D. A. M. Barrington, K. Compton, H. Straubing, and D. Thérien. Regular languages in nc1.
Journal of Computer and System Sciences, 44(3):478–499, 1992.

[3] D. A. M. Barrington, N. Immerman, and H. Straubing. On uniformity within nc1. Journal of
Computer and System Sciences, 41(3):274–306, 1990.

[4] J. R. Büchi. Weak second-order arithmetic and finite automata. Mathematical Logic Quar-
terly, 6(1-6), 1960.

[5] S. R. Buss. The boolean formula value problem is in alogtime. In Proceedings of the nine-
teenth annual ACM symposium on Theory of computing, pages 123–131, 1987.

[6] W. F. Dowling and J. H. Gallier. Linear-time algorithms for testing the satisfiability of propo-
sitional horn formulae. The Journal of Logic Programming, 1(3):267–284, 1984.

[7] H.-D. Ebbinghaus and J. Flum. Finite model theory. Springer Science & Business Media,
1999.

[8] H.-D. Ebbinghaus, J. Flum, W. Thomas, and A. S. Ferebee. Mathematical logic, volume
1910. Springer, 1994.

27

[9] C. C. Elgot. Decision problems of finite automata design and related arithmetics. Transac-
tions of the American Mathematical Society, 98(1):21–51, 1961.

[10] H. B. Enderton. A mathematical introduction to logic. Elsevier, 2001.

[11] R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets. Complexity
of computation, 7:43–73, 1974.

[12] E. Grädel. Capturing complexity classes by fragments of second-order logic. Theoretical
Computer Science, 101(1):35–57, 1992.

[13] E. Grädel, P. G. Kolaitis, L. Libkin, M. Marx, J. Spencer, M. Y. Vardi, Y. Venema, S. Wein-
stein, et al. Finite Model Theory and its applications. Springer, 2007.

[14] E. Grandjean. Universal quantifiers and time complexity of random access machines. Math-
ematical systems theory, 18(1):171–187, 1985.

[15] Y. Gurevich. Logic and the challenge of computer science. Technical report, 1985.

[16] Y. Gurevich and H. R. Lewis. A logic for constant-depth circuits. Information and Control,
61(1):65–74, 1984.

[17] J. Hastad. Almost optimal lower bounds for small depth circuits. In Proceedings of the
eighteenth annual ACM symposium on Theory of computing, pages 6–20, 1986.

[18] A. Horn. On sentences which are true of direct unions of algebras1. The Journal of Symbolic
Logic, 16(1):14–21, 1951.

[19] N. Immerman. Relational queries computable in polynomial time. In Proceedings of the
fourteenth annual ACM symposium on Theory of computing, pages 147–152, 1982.

[20] N. Immerman. Languages which capture complexity classes. In Proceedings of the fifteenth
annual ACM symposium on Theory of computing, pages 347–354, 1983.

[21] N. Immerman. Relational queries computable in polynomial time. Information and Control,
68(1):86–104, 1986.

[22] N. Immerman. Descriptive complexity. Springer, 1999.

[23] L. Libkin. Elements of finite model theory, volume 41. Springer, 2004.

[24] A. Livchak. Languages for polynomial-time queries. Computer-based modeling and opti-
mization of heat-power and electrochemical objects, page 41, 1982.

[25] R. McNaughton and S. A. Papert. Counter-Free Automata (MIT research monograph no. 65).
The MIT Press, 1971.

28

[26] B. Molzan. Expressibility and nonuniform complexity classes. SIAM Journal on Computing,
19(3):411–423, 1990.

[27] C. H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

[28] O. Reingold. Undirected connectivity in log-space. J. ACM, 55(4), sep 2008.

[29] N. Schweikardt. A short tutorial on order-invariant first-order logic. In International Com-
puter Science Symposium in Russia, pages 112–126. Springer, 2013.

[30] M. Sipser. Borel sets and circuit complexity. In Proceedings of the fifteenth annual ACM
symposium on Theory of computing, pages 61–69, 1983.

[31] H. Straubing. Finite automata, formal logic, and circuit complexity. Birkhäuser, 1994.

[32] B. A. Trakhtenbrot. Finite automata and the logic of one-place predicates. Sibirskii Matem-
aticheskii Zhurnal, 3(1):103–131, 1962.

[33] B. A. Trakhtenbrot. Finite automata and the logic of one-place predicates. American Mathe-
matical Society Translations, 2(59):23–55, 1966.

[34] M. Y. Vardi. The complexity of relational query languages. In Proceedings of the fourteenth
annual ACM symposium on Theory of computing, pages 137–146, 1982.

[35] A. C.-C. Yao. Separating the polynomial-time hierarchy by oracles. In 26th Annual Sympo-
sium on Foundations of Computer Science (sfcs 1985), pages 1–10. IEEE, 1985.

29

